Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(14): 9642-9657, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37440703

RESUMO

The G-protein-coupled Y4-receptor (Y4R) and its endogenous ligand, pancreatic polypeptide (PP), suppress appetite in response to food intake and, thus, are attractive drug targets for body-weight control. The C-terminus of human PP (hPP), T32-R33-P34-R35-Y36-NH2, penetrates deep into the binding pocket with its tyrosine-amide and di-arginine motif. Here, we present two C-terminally amidated α,γ-hexapeptides (1a/b) with sequence Ac-R31-γ-CBAA32-R33-L34-R35-Y36-NH2, where γ-CBAA is the (1R,2S,3R)-configured 2-(aminomethyl)-3-phenylcyclobutanecarboxyl moiety (1a) or its mirror image (1b). Both peptides bind the Y4R (Ki of 1a/b: 0.66/12 nM) and act as partial agonists (intrinsic activity of 1a/b: 50/39%). Their induced-fit binding poses in the Y4R pocket are unique and build ligand-receptor contacts distinct from those of the C-terminus of the endogenous ligand hPP. We conclude that energetically favorable interactions, although they do not match those of the native ligand hPP, still guarantee high binding affinity (with 1a rivaling hPP) but not the maximum receptor activation.


Assuntos
Ciclobutanos , Neuropeptídeo Y , Humanos , Neuropeptídeo Y/metabolismo , Ligantes , Receptores de Neuropeptídeo Y/metabolismo , Polipeptídeo Pancreático/metabolismo
2.
J Med Chem ; 64(22): 16746-16769, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34748345

RESUMO

The family of neuropeptide Y (NPY) receptors comprises four subtypes (Y1R, Y2R, Y4R, Y5R), which are addressed by at least three endogenous peptides, i.e., NPY, peptide YY, and pancreatic polypeptide (PP), the latter showing a preference for Y4R. A series of cyclic oligopeptidic Y4R ligands were prepared by applying a novel approach, i.e., N-terminus to arginine side-chain cyclization. Most peptides acted as Y4R partial agonists, showing up to 60-fold higher Y4R affinity compared to the linear precursor peptides. Two cyclic hexapeptides (18, 24) showed higher Y4R potency (Ca2+ aequorin assay) and, with pKi values >10, also higher Y4R affinity compared to human pancreatic polypeptide (hPP). Compounds such as 18 and 24, exhibiting considerably lower molecular weight and considerably more pronounced Y4R selectivity than PP and previously described dimeric peptidic ligands with high Y4R affinity, represent promising leads for the preparation of labeled tool compounds and might support the development of drug-like Y4R ligands.


Assuntos
Arginina/química , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Sequência de Aminoácidos , Ciclização , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Receptores de Neuropeptídeo Y/química
3.
J Med Chem ; 63(15): 8198-8215, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32614182

RESUMO

Within the family of neuropeptide Y (NPY) receptors, the Y4 receptor (Y4R) is unique as it prefers pancreatic polypeptide over NPY and peptide YY. Today, low-molecular-weight Y4R ligands are lacking, in particular antagonists. We synthesized a series of peptidic NPY Y4R ligands, derived from the hexapeptide acetyl-Arg-Tyr-Arg-Leu-Arg-Tyr-NH2 (1), reported to be a Y4R partial agonist with high affinity (pKi Y4R: 8.43). Peptide 1 was N-terminally extended as well as truncated and subjected to a d-amino acid scan, and Leu was replaced by different amino acids. Compounds were characterized by radioligand competition binding and functional studies (Cai2+ mobilization and ß-arrestin 1/2 recruitment). N-terminal truncation of 1 resulted in a tetrapeptide (Arg-Leu-Arg-Tyr-NH2), being a Y4R partial agonist with unchanged Y4R affinity (pKi: 8.47). Remarkably, replacement of Leu in 1 and in derivatives of 1 by Trp turned Y4R agonism to antagonism, giving Y4R antagonists with pKi values ≤7.57.


Assuntos
Neuropeptídeo Y/metabolismo , Oligopeptídeos/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Ligantes , Neuropeptídeo Y/química , Oligopeptídeos/química , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/antagonistas & inibidores
4.
ACS Med Chem Lett ; 11(3): 334-339, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32184966

RESUMO

Lately, amino-functionalized N ω-carbamoylated arginines were introduced as arginine surrogates enabling peptide labeling. However, this approach is hardly compatible with peptides also containing lysine or cysteine. Here, we present the synthesis of an alkyne-functionalized, N ω-carbamoylated arginine building block (7), which is compatible with Fmoc-strategy solid-phase peptide synthesis. The alkynylated arginine was incorporated into three biologically active linear hexapeptides and into a cyclic pentapeptide. Peptide conjugation to an azido-functionalized fluorescent dye via "click" chemistry was successfully demonstrated. In the case of a peptide also containing lysine besides the alkyne-functionalized arginine, this was feasible in a "bioorthogonal" manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...